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Abstract

The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium
intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However,
how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still
controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization
caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the
Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming
the Mg,Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg,Cu
and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final
18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous
phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of
crystals is proposed: As the ball milling time increases, the sizes of Mg,Cu and Cu crystals become smaller and
smaller, so the diffracted peaks of Mg,Cu and Cu become broader and broader and result in their overlap between
39° and 45° at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak,
microstructure observation and annealing experiment on the milled sample were carried out. In the transmission
electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified
as Mg,Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during
the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is
observed. All the above results confirm that the broad halo diffracted peak in the milled MgCu sample is attributed
to the overlap of the broadened peaks of the very small Mg,Cu and Cu nanocrystalline phase, not the MgCu
amorphous phase. The whole milling process of MgCu can be described as follows: Mg + Cu — Mg,Cu + Cu —
Mgzcunanocrysta\ + Cunanocrysta\~

Background

The mechanical alloying (MA) process developed by
Benjamin et al. [1,2] in the early 1970s is now recog-
nized as a versatile technique for obtaining oxide
dispersion-strengthened superalloys, equilibrium interme-
tallic phases, amorphous compounds, nanocrystalline
materials, or metastable crystalline phases. Due to the
complicated ball milling environment, how the nanoscale
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microstructure evolutes during the ball milling in various
materials is still under discussion, and some conclusions
on the final phases after ball milling are controversial, es-
pecially in the field of solid-state amorphization caused by
ball milling [3,4].

On the other hand, in the past two decades, Mg-based
amorphous alloys (Mg-Cu-Y, Mg-Ni, Mg-Cu, etc.) are
regarded as a new family of promising materials with ex-
cellent specific strength, improved hydrogen storage, and
good corrosion resistance [5]. Considering the large differ-
ences in melting points and vapor pressures between Mg
and other alloying elements, it is a great challenge to ob-
tain Mg-based amorphous alloys by traditional casting
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techniques. MA is a low-temperature process; therefore, it
overcomes the disadvantages of conventional alloying and
allows forming amorphous samples for compositions
which cannot be amorphized by casting techniques. In
fact, a number of binary or ternary Mg-based amorphous
alloys, such as Mg-Ni [6] and Mg-Cu-Y [7,8], have been
synthesized by mechanical alloying of the crystalline elem-
ental powders. Some previous studies [9,10] reported that
the MgCu amorphous alloys could also be prepared by
ball milling. They considered the final product of a milled
MgCu sample as amorphous alloy based on the broad halo
peak in the X-ray diffraction pattern alone. However, it
should be noted that it is not possible to distinguish
among the materials which are (a) truly amorphous and
(b) extremely refined grain by observing the broad X-ray
peaks alone [3], especially in the ball-milled samples.
Hence, the above conclusions on the ball-milled MgCu
sample might not be very valid.

Based on above background, from the perspective of
the development of Mg-Cu amorphous alloys, and also
on the understanding of solid-state amorphization
mechanism during ball milling process, it makes sense
to clarify the phase composition and nanoscale micro-
structure of the high-energy ball milled MgCu. Hence,
in the present work, the phase evolution during the
high-energy ball milling process of the Mg and Cu
mixed powder was investigated. Furthermore, micro-
structure observation and annealing treatment of the
milled MgCu sample were also carried out.

Methods

The Mg powder (99.8cs% purity, 325 mesh) and Cu
powder (99.9% purity, 625 mesh) were mixed in a molar
ratio of MgsoCusp. Then, tungsten carbide milling balls
and the mixed powder were put into the tungsten car-
bide vessel with the ball-to-powder weight ratio of 5:1 in
the argon box. The high-energy ball milling was per-
formed on a SPEX 8000 M mill (Thomas Scientific,
Swedesboro, NJ, USA) under argon atmosphere. The
milling process was performed in a discontinuous way
consisting of 1 milling h followed by rest period of
0.5 h. The powders after milling for several different
times were characterized by X-ray diffraction (XRD) in
the Bruker D8 Advance X-ray diffractometer (Bruker
Optik GmbH, Ettlingen, Germany). The evolution of
grain size of Mg and Cu during the ball milling was
estimated using the single-line method of diffraction
line-broadening analysis based on the XRD data.

The microstructure was investigated using high-
resolution transmission electron microscopy. The differ-
ential scanning calorimetry (DSC) measurements of
the milled MgCu powders were carried out using the
power-compensated PerkinElmer Pyris-1 (PerkinElmer,
Waltham, MA, USA) from 50°C to 450°C with the
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heating rate of 20°C/min under argon gas protection.
Accordingly, several annealing temperatures were deter-
mined, and the annealing experiment is carried out at
these temperatures. After that, the phase composition of
the annealed samples is also studied by X-ray diffraction.

Results and discussion

Figure 1 shows the XRD patterns of MgCu samples after
ball milling for different times. It is found that some of
Mg firstly reacts with Cu, forming the Mg,Cu alloy in
the primary stage of ball milling. As the milling time
increases, the intensities of Mg, Mg,Cu, and Cu peaks
gradually decrease, and the corresponding widths
broaden, which is mainly attributed to the grain refine-
ment and accumulation of microstrain during the ball
milling. The evolution of grain size and microstrain in
the Mg and Cu is estimated using the single-line method
of diffraction line-broadening analysis and illustrated in
Figures 2 and 3, respectively (this estimation was only
applied to the short-time milled samples for the reason
that the diffracted peaks of Mg and Cu become unob-
vious when the ball milling time is longer than 5 h). One
can see that the grain sizes of Mg and Cu both decrease,
while their microstrains increase significantly as the ball
milling proceeds. When ball milling time reaches 18 h,
all the peaks of Mg, Mg,Cu, and Cu cannot be recog-
nized, and a broad halo peak appears in the XRD pat-
tern. In previous studies [9,10], it was suggested that the
halo peak originated from the amorphous phase formed
during the ball milling. However, considering the asym-
metric shape of this broad halo characteristic of amorph-
ous materials, another possibility that this halo peak
results from the very small size of Mg,Cu and Cu crys-
tals is proposed in the present work: As the ball milling
time increases, the sizes of Mg,Cu and Cu become
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Figure 1 XRD patterns of MgCu sample after ball milling for
different times.
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Figure 2 Evolution of grain size and microstrain in Mg during

ball milling of the MgCu sample.

smaller, and consequently, the diffracted peaks of Mg,Cu
and Cu between 39° and 45° become so broad that they
could overlap each other, finally forming the amorphous-
like halo peak. Other peaks of Mg,Cu and Cu cannot be
found mainly due to the small size of Mg,Cu and Cu
nanocrystals (as discussed above, the size of grains have
already decreased below 20 nm) after ball milling.

Based on the above discussion, what is the real origin
of the broadened halo peak in the milled sample? Are
nanocrystals or amorphous phase present in the ball-
milled MgCu sample? To answer these questions, it is
needed to further investigate the ball-milled sample with
the aid of microstructure observation and annealing
experiment.

Figures 4 and 5 show some representative transmission
electron microscopy (TEM) images of different particles
in the 18-h milled MgCu sample. According to the dark-
field image and the corresponding selected area electron
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Figure 3 Evolution of grain size and microstrain in Cu during
ball milling of the MgCu sample.
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Figure 4 TEM dark-field image (a) and corresponding SAD
pattern (b) of one 18-h milled MgCu particle.

diffraction (SAD) pattern in Figure 4, the particle con-
sisted of nanocrystals with a size of less 20 nm. Based on
the SAD pattern, the nanocrystals are identified as Cu and
Mg,Cu. The result is consistent with the XRD patterns in
Figure 1, in which the peaks of Cu and Mg,Cu phase both
gradually become broader and finally unrecognized due to
the formation of Cu and Mg,Cu nanocrystals.

The microstructure of the particle in Figure 5 seems
different from the particle in Figure 4. The rings in the
SAD pattern (see Figure 5b) are more diffused, and no
clear ring can be observed. Only a halo is present in the
SAD pattern. This type of pattern is always identified as
amorphous in the literature. However, in the corre-
sponding dark-field image of this particle (see Figure 5a),
the presence of bright dots indicates that many nano-
crystals still exist in this particle (about 10 nm). Observ-
ing Figure 5b more carefully, it can be found that the
halo is located in almost the same position of the rings
belonging to Cu and Mg,Cu (see Figure 4b). Hence, it is
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Figure 5 TEM dark-field image (a) and corresponding SAD
pattern (b) of another 18-h milled MgCu particle.

speculated that the diffraction of a large amount of very
small Cu and Mg,Cu nanocrystals possibly results in the
amorphous-like pattern in the Figure 5b. Different
microstructures in the Figures 4 and 5 from the same
milled sample also imply that the size distribution of
grains after ball milling is not uniform.

The DSC curve of the 18-h milled MgCu sample dur-
ing the heating process is present in Figure 6. There are
two exothermal peaks appearing in the DSC curve. In
order to determine the origin of these two exothermal
peaks, annealing experiments on 18-h milled MgCu
samples were carried out at different temperatures, and
the phase composition of annealed samples was studied
by X-ray diffraction. One can see that no obvious change
can be found in the XRD patterns of the as-milled sam-
ple and sample annealed at 130°C (the ending point of
the first exothermal peak) except that a minor peak at
about 40° appears (on the halo peak) in the XRD pattern
of the sample annealed at 130°C (see Figure 7). This
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Figure 6 Measured DSC curves of 18-h milled MgCu sample.
The sample was heated from 50°C to 450°C with a heating rate of
20°C/min.

peak was identified as the main peak of the Mg,Cu
phase. It is explained that as annealing is performed,
Mg,Cu nanocrystals start to grow, and they become so
large that they can be detected by X-ray diffraction.
Hence, the first exothermal peak seems to be associated
with the growth of the nanocrystals and also the relax-
ation of stress and should not result from the
crystallization of the amorphous phase. On the other
hand, one can see that the diffracted peaks of MgCu, ap-
pear in the XRD pattern of the milled MgCu sample
after annealing at 240°C (the peak point of the second
exothermal peak). Moreover, as annealing temperature
increases, the peak intensities of MgCu, and Mg,Cu be-
come stronger, and finally, they are the main crystalline
phases in the sample annealed at 350°C (the ending
point of the second exothermal peak). Combined with
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Figure 7 XRD pattern of 18-h milled MgCu sample annealed at
different temperatures.
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the above results, the second exothermal peak is related
to the reaction between nanocrystalline Mg,Cu and Cu,
forming MgCu,. There is no obvious exothermic peak
corresponding to the crystallization of the amorphous
phase in the whole DSC curve of milled sample.

Conclusions

Based on the above analysis, it is concluded that the
long-time milled MgCu sample consisted of Cu and
Mg,Cu nanocrystals, and the halo peak in the XRD pat-
tern of the 18-h milled sample ought to be attributed to
the overlap of the broadened peaks of the Cu and
Mg,Cu nanocrytals. The whole milling process of the
MgCu system can be described as follows: Mg+ Cu —
Mg, Cu + Cu — Mg, Clnanocrystal + Clnanocrystal - Accord-
ing to the present research, it is worth noting that for
the preparation of amorphous alloys from different kinds
of metal using ball milling, it is not precise to consider
the diffused halo peak appearing in the XRD pattern of
milled samples as amorphous phase without the careful
investigation of the microstructure. Even during the ob-
servation of the microstructure, the appearance of the
diffused ring in the SAD cannot guarantee that the sam-
ple consisted of the amorphous phase. The diffraction of
a large amount of nanocrystals with a very small size
might also result in the amorphous-like SAD pattern.
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